Surname	Centre Number	Candidate Number
Other Names		2

GCE AS

B410U10-1

CHEMISTRY – AS component 1 The Language of Chemistry, Structure of Matter and Simple Reactions

TUESDAY, 22 MAY 2018 - MORNING

1 hour 30 minutes

	For Examiner's use only				
	Question	Maximum Mark	Mark Awarded		
Section A	1. to 7.	10			
Section B	8.	9			
	9.	10			
	10.	13			
	11.	12			
ed a:	12.	14			
	13.	12			
	Total	80			

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- Data Booklet supplied by WJEC.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer **all** questions in the spaces provided.

Section B Answer all questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

INFORMATION FOR CANDIDATES

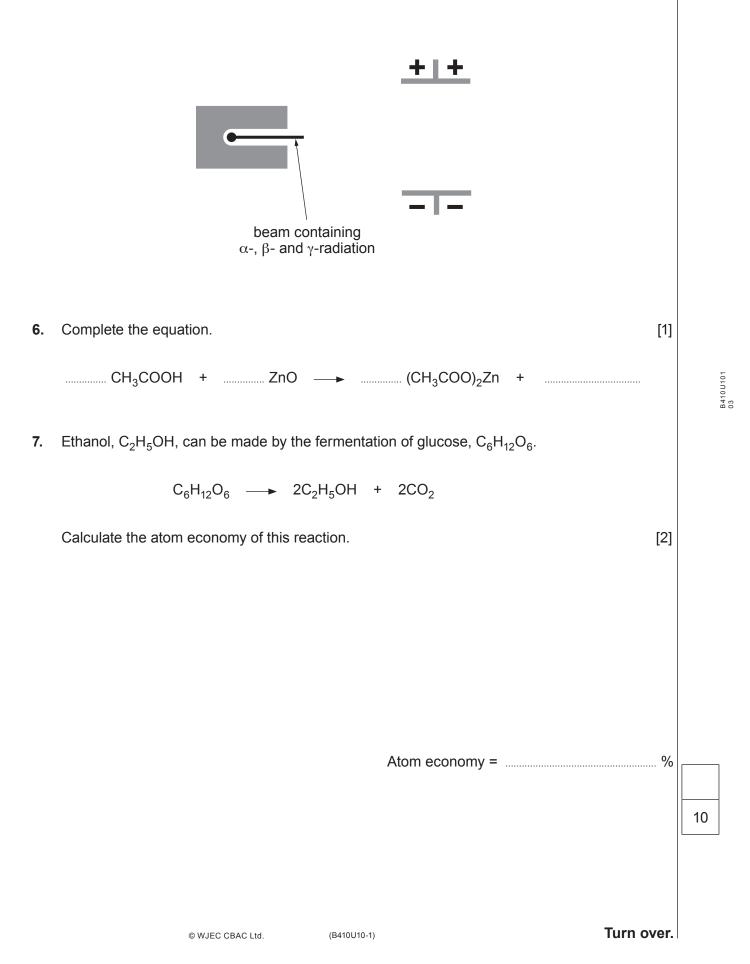
The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in Q.9(a).

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.


© WJEC CBAC Ltd

	SECTION A	Examiner only
	Answer all questions in the spaces provided.	
1.	Complete the electronic structure of a bromine atom, Br. [1] 1s ² 2s ² 2p ⁶	
2.	Give the oxidation state of chromium in the dichromate ion, $Cr_2O_7^{2-}$. [1]	
3.	Complete the diagram to show the structure of caesium chloride, CsCl. [1]	
4.	Using the formula of calcium sulfate, calculate the number of oxygen atoms present in 0.1 mo of calcium sulfate.	
	Number of oxygen atoms =	

2

Examiner only

5. Complete the diagram to show how α -, β - and γ -radiation are affected by an electric field. [2]

Examiner only

SECTION B

Answer all questions in the spaces provided.

(a)	Ice floats on water.
(b)	The mass spectrum of naturally-occurring chlorine, Cl ₂ , contains three lines of differ heights in the molecular ion region.
(c)	Universal indicator is red when placed in 0.1 mol dm ⁻³ hydrochloric acid and it is oral when placed in 0.1 mol dm ⁻³ propanoic acid, C_2H_5COOH .
	when placed in 0.1 mordin $^{\circ}$ propanoic acid, $C_2 \Pi_5 COOH$.

Examiner only

PMT

9. (a) A student was studying the boiling temperatures of different substances including those listed in the table.

Substance	Boiling temperature / °C
hydrogen, H ₂	-253
bromine, Br ₂	59
hydrogen bromide, HBr	-66

The student suggested that the boiling temperature could be predicted by considering the strength of the covalent bonds in the molecules.

State why the student is **incorrect**. Explain your reasoning and the factors that govern the boiling temperatures of these substances. [6 QER]

b)	(i)	Silicon and hydrogen can form a series of compounds called silanes.	Examiner only
		Draw a dot and cross diagram to show the electron arrangement in the silane, Si_2H_6 . Show outer electrons only. [2]	
	(ii)	Dradiat the H Si H hand angle in Si H Explain your answer [2]	
	(ii)	Predict the H—Si—H bond angle in Si_2H_6 . Explain your answer. [2]	

|Examiner

		naturally-occurring ate, PbCO ₃ .	crystalline	ore that	contains	a high	percentage	of insoluble	only
--	--	--	-------------	----------	----------	--------	------------	--------------	------

One method of finding the percentage of lead in the ore is by forming lead ions in solution (a) and then precipitating them as lead(II) sulfate. Suggest how the ore could be treated to form lead(II) ions in solution. [1] (i) _____ Name a solution which could be added to the lead(II) solution to form lead(II) (ii) sulfate. [1] (iii) Write an ionic equation for the reaction used to form lead(II) sulfate. Include state symbols. [2] Describe how the lead(II) sulfate precipitate should be treated to obtain results for (iv) quantitative analysis. Explain your answer. [3]

B410U101 07

			8			
(b)	(i)		of cerrusite were investigated by ng results were obtained.	the method outl	ined in part <i>(a)</i> and the	Examiner only
				Mass/g		
			Empty container	21.47	-	
			Container + lead(II) sulfate	25.03		
		Calcula	ate the percentage by mass of lead	d in the cerrusite.	[3]	
	(ii)	Two w	alance used in the experiment reighings were made to find the um percentage error in the mass c	could be read mass of lead(II) sulfate. Calculate the	
			Maximum perc	entage error =	%	
(c)	lead(es of cerrusite are thought to con onate. Suggest how this hypothes atory.			

|Examiner

11	Limewater is a saturated solution of calcium hydroxide, Ca(OH) ₂ . A student carried out an	only
	Linewater is a saturated solution of calcium hydroxide, $Ca(On)_2$. A student carried out an	
	experiment to find the concentration of calcium hydroxide in a sample of limewater. The student	
	had access to the apparatus and chemicals usually available in a school or college laboratory.	

The teacher told the student that he needed to carry out a titration using $0.050 \,\text{mol}\,\text{dm}^{-3}$ hydrochloric acid.

(a) Describe how the student could prepare 0.050 mol dm⁻³ hydrochloric acid from 2.0 mol dm⁻³ hydrochloric acid. You should include details of any apparatus required.
[3]

- (b) The student carried out the titration and used $19.60 \, \text{cm}^3$ of the $0.050 \, \text{mol} \, \text{dm}^{-3}$ hydrochloric acid to neutralise $25.0 \, \text{cm}^3$ of the calcium hydroxide solution.
 - Calculate the concentration of the calcium hydroxide solution in $g dm^{-3}$. [4]

Concentration = $g dm^{-3}$

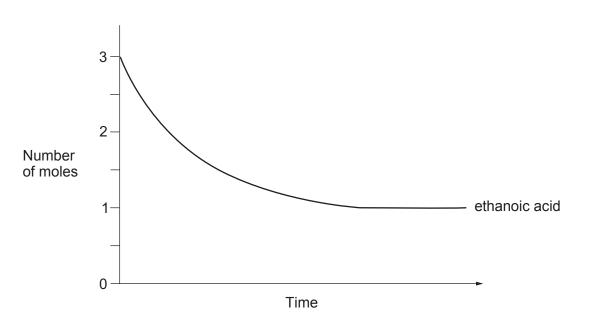
(c) The student left the bottle of calcium hydroxide solution overnight without its stopper in place. Explain what he observed when he returned next day. [2]

(B410U10-1)

(d)	The student decided to repeat the titration using a saturated solution of barium hydroxide, $Ba(OH)_2$.	Examiner only
	How would the volume of hydrochloric acid used in the titration be different? Explain your answer. [1]	
······		
(e)	The student did not label the solutions of calcium hydroxide and barium hydroxide. Describe a test he could use to determine which solution is which. Include the result of the test in each case. [2]	
••••••		

12

|Examiner


12. Carboxylic acids react with alcohols to make esters, using sulfuric acid as a catalyst. These reactions are reversible.

 $CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$

ethanoic acid ethanol ethyl ethanoate

- (a) State what is meant by a *reversible* reaction. [1]
- (b) In an experiment to prepare ethyl ethanoate, 3.0 mol of ethanoic acid were mixed with 2.5 mol of ethanol and a small amount of concentrated sulfuric acid. Water was added to make a total volume of 1.0 dm³.

The number of moles of ethanoic acid present was measured as the reaction proceeded until equilibrium was reached. The results were then plotted.

On the grid sketch:

- the line that shows the number of moles of ethanol as the reaction proceeds to equilibrium. Label this line **A**.
- the line that shows the number of moles of ethyl ethanoate as the reaction proceeds to equilibrium. Label this line B.
 [3]

(i	i)	Write the expression for the equilibrium constant, $K_{\rm c}$, for the esterification reaction. Include the unit, if any. [2]	Examin only
(ii	i)	Unit Under certain conditions the value of K_c was found to be 4. At a higher temperature, with all other factors being kept constant, this value remained almost the same. Explain what can be deduced from this information. [2]	
the	e fir	ification is catalysed by the addition of concentrated sulfuric acid. In an esterification nal pH of the solution was 2.4. Calculate the concentration of hydrogen ions present, I dm ⁻³ . [2]	
		[H ⁺] = mol dm ⁻³	

(e)	2.94 g of ethanoic acid were mixed with 2.07 g of ethanol and allowed to re ethyl ethanoate were produced. Calculate the percentage yield of this reaction of the percentage of the percentage yield of the percentage of the percen		Examiner only
	Percentage yield =	%	14
			14
	© WJEC CBAC Ltd. (B410U10-1)	Turn over.	

colle	ygen to form carbon dioxide and water. 12.57 g of carbon dioxide and 7.74 g of water were llected.				
(a)	Suggest how the mass of carbon dioxide and the mass of water could be measured in the experiment.	nis [2]			
(b)	Find the percentage by mass of each element in X .	[3]			
	Percentage carbon =	%			
	Percentage hydrogen =	%			
	Percentage oxygen =	%			
(c)	Calculate the empirical formula of X .	[2]			
(C)					
(C)					
(C)					

(d)	9.20 g of X , measured at a pressure of 103 kPa and a temperature of 100 °C, had a volur of 6.02×10^3 cm ³ . Calculate the relative molecular mass, M_r , of X .		Examiner only
	Relative molecular mass =		
(e)	Use your answers to parts (c) and (d) to deduce the molecular formula of X .	[1]	
	Molecular formula		[]
	END OF PAPER		12
	© WJEC CBAC Ltd. (B410U10-1) Turn ov	er.	

16	
	Examiner only
For continuation only.	